

"Nutrizione mirata del suino per rispondere alle nuove sfide del settore"

WEBINAR

INCONTRO

Giovedì 29 aprile 2021 ore 10.00 - 12.00 Sponsor:

Con il patrocinio di:

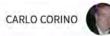
3.

Nutrizione della scrofa ad alta produzione

Carlo Corino

Direttore della Scuola Specializzazione in Patologia suina - Università Statale di Milano

- Scrofe iperprolifiche
- Scrofa in transizione (cenni)
- Fabbisogni energetici in lattazione (assunzione alimento)
- Fabbisogni proteici in lattazione
- Alcune considerazioni conclusive



Piglets

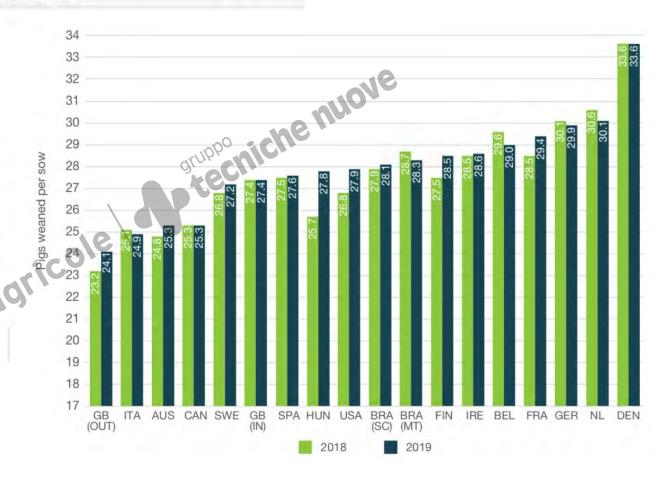
Finishers

Health

African Swine Fever

World of Pigs

Digital Magazine


Finishers

Background Oct 27, 2014 13 comments | last update: Feb 25, 2016

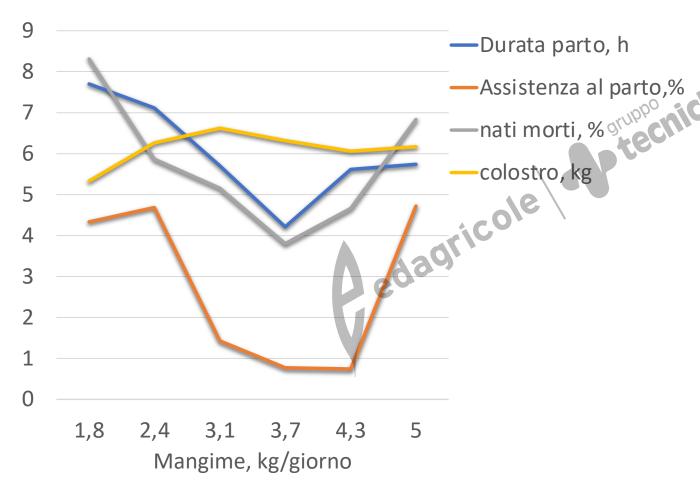
Striving for more than 35 piglets per sow per year

What good genetics and highly motivated staff can lead to is shown by Tom Oestrup - at his farm on the Danish island Funen. Last year he weaned 35 piglets per sow per year - and this year the target is up again.

Denmark prides herself on her pig industry and rightly so. For a nation of 5 million people the country punches well over her weight. The country's DanAvl breeding organisation is aggressively exporting stock all over the world and their booths feature predominantly at all the major pig salons around the globe. DanAvl stock are noted for their prolificacy and that is naturally a feature of the stock on Danish farms. Physical output, though, is one thing but must not be at the expense of profit. Managing hyperprolific sows takes a lot of time, and time is money.

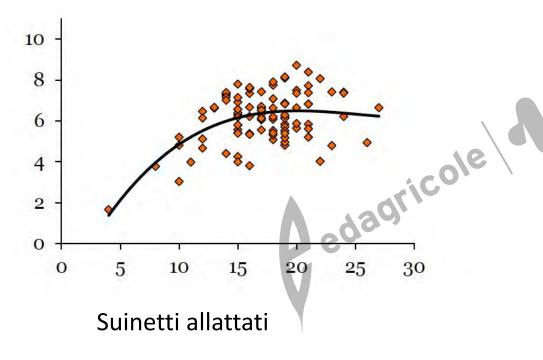
Agriculture and Horticulture **Development Board 2020**

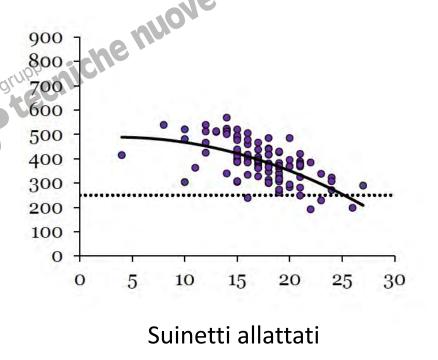
Un equilibrio delicato


La genetica ci fornisce animali altamente prolifici

Allevatore e nutrizionista devono

- 1. Mantenerli in vita
 - ridotta % di nati morti
 - elevata sopravvivenza
- 2 un elevato peso allo svezzamento

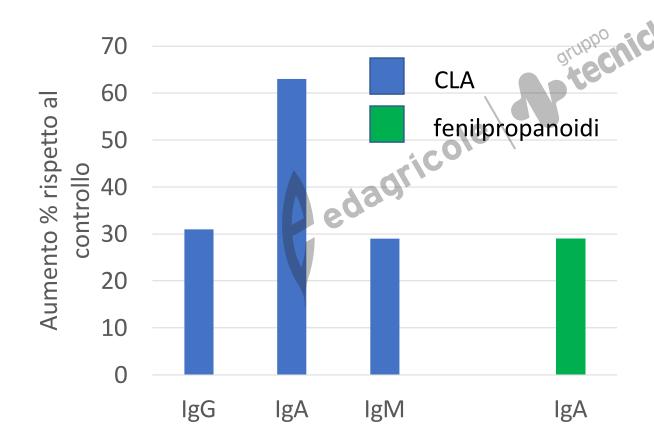

Influenza del livello alimentare nella scrofa in transizione (ultima settimana gestazione)

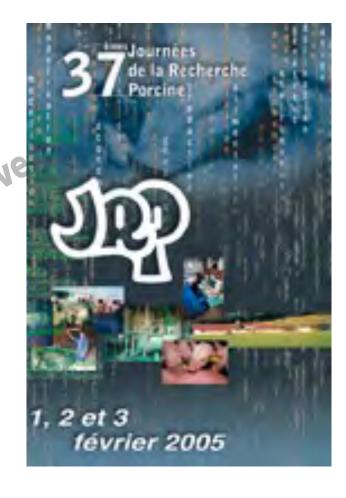


Produzione di colostro all'aumentare dei suinetti

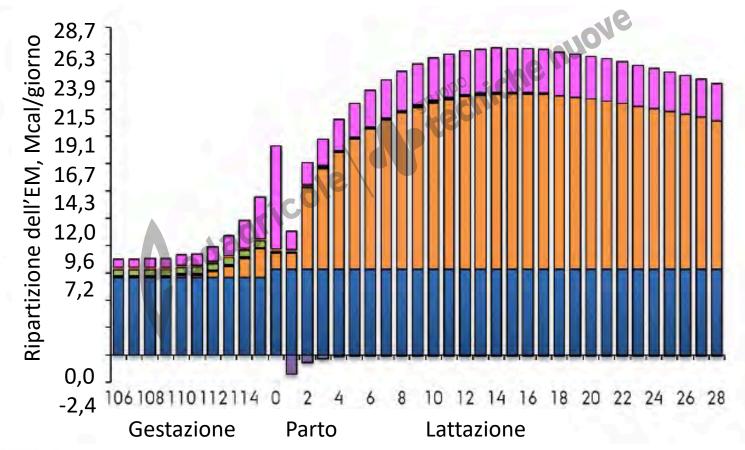
Produzione di colostro/scrofa

Assunzione di colostro/suinetto


Effect of dietary conjugated linoleic acid supplementation in sows on performance and immunoglobulin concentration in piglets¹


C. Corino,* G. Pastorelli,* F. Rosi,† V. Bontempo,* and R. Rossi*2

*Department of Veterinary Sciences and Technologies for Food Safety, and †Department of Animal Science, University of Milan, Via Celoria 10, 20133 Milan, Italy


22009 American Society of Animal Science. All rights reserved.

J. Anim. Sci. 2009, 87:2299-2305 doi:10.2527/jas.2008-1232

Fabbisogni in EM per il • mantenimento, • produzione di latte e colostro, • crescita mammaria, • crescita fetale ed • extra-calore

Stima della produzione di latte e della mobilizzazione delle riserve in base al numero di suinetti allattati per scrofa (NRC, 2012)

Suinetti per nidiata, n	10	12	1110 ¹ 14	16
Latte, kg/giorno	8,7	10,3	11,3	11,7
Variazione di PV scrofa, g/d	G206	-636	-915	-969
Deposizione proteica, g/d	-21	-63	-91	-96
Deposizione di grasso, g/d	-103	-316	-455	-482

Conviene utilizzare l'energia dei depositi adiposi o dell'alimento ?

Efficienza dell'utilizzazione dell'energia (EM)

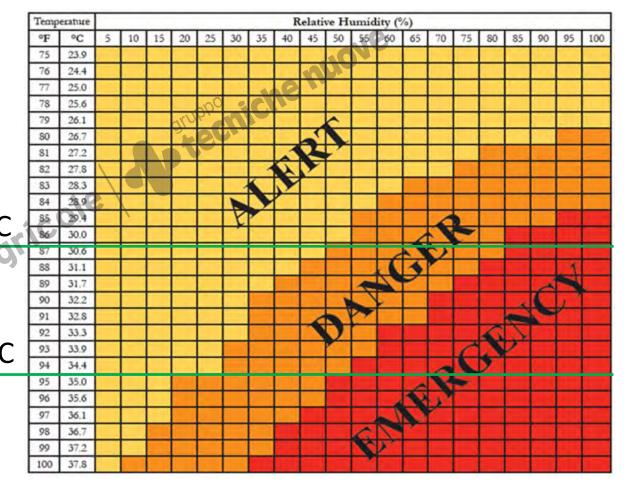
- Energia della dieta.

 Latte k= 78 % (22% come calore)
- Energia tessuti.
 Latte k= 89 % (11% come calore)
- Ricostituzione delle riserve k= 73% (27% come calore)
- Mobilizzazione + k= (89 x 73) = 65 % (35% come calore)

Fattori di variazione dell'assunzione alimentare della scrofa in lattazione

Intrinseci all'animale

- 1. genetica
- 2. ordine di parto
- 3. numerosità della nidiata allattata
- 4. lunghezza e stadio della lattazione
- 5. stato di ingrassamento
- 6. condizioni sanitarie


Fattori di variazione dell'assunzione alimentare della scrofa in lattazione

Ambientali

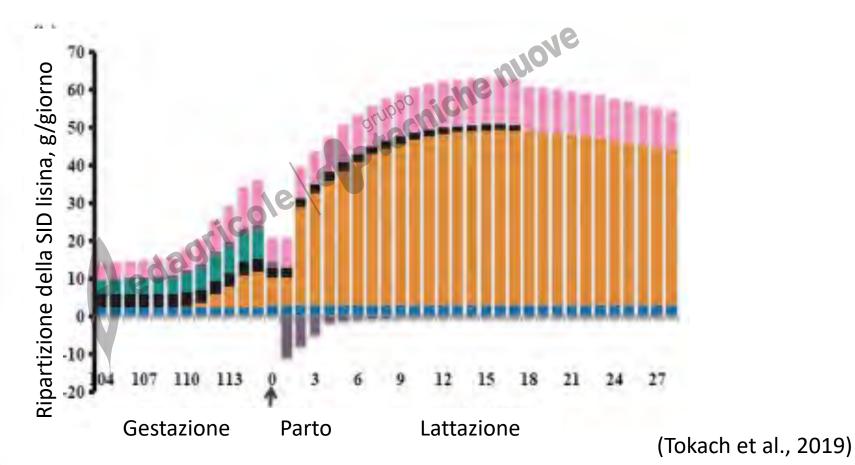
1. temperatura

2. umidità

3. luce

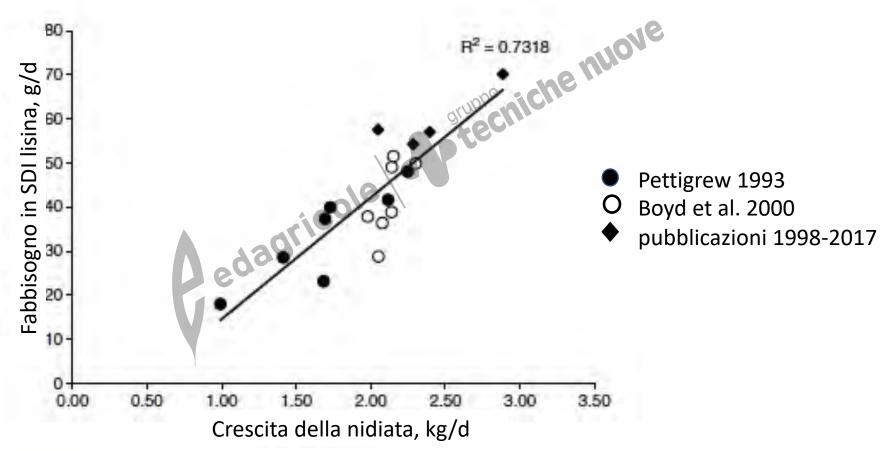
Intrinseci all'alimento

- 1. concentrazione energetica
- 2. equilibrio amminoacidico
- caratteristiche fisiche del mangime (dimensioni delle particelle, pellettatura, alimentazione liquida)
- 4. frequenza di distribuzione (e tipo di mangiatoia)
- 5. Acqua
- 6. Altri fattori



Con quali principi alimentari apportare l'energia?

Perdite energetiche sotto forma di calore durante il metabolismo (% dell'EM) 18 10 Fibra Amido Proteine Grassi



Fabbisogni SDI lisina per il • mantenimento, • produzione di latte e colostro, • crescita mammaria, • crescita fetale e • ossidazione/transaminazioni

Relazione fra fabbisogno apporto in lisina digeribile ileale standardizzata e crescita della nidiata

Influenza dell'accrescimento della nidiata e dell'assunzione di alimento della scrofa sul fabbisogno in lisina

	Incremento in peso della nidiata g/giorno				
	2500	2750 rec	3000	3250	
Lisina digeribile, g/d	43,3	46,4	49,4	52,5	
% SDI lys (4 kg)	1,08	1,16	1,24	1,31	
% SDI lys (5 kg)	0,87	0,93	0,99	1,05	
% SDI lys (6 kg)	0,72	0,77	0,82	0,87	

Fabbisogni dell scrofe come proposti da Danbred

	GESTAZIONE	LATTAZIONE
EM, kcal/kg	3000	3200
EN, kcal/kg	2270 chiche	2414
	arribbo	
Proteine SID min.	100	124
Lisina, SID g/kg	4.2	8.4
Metionina, % lisina	31	31
Lisina, SID g/kg Metionina, % lisina Met + Cis, % lisina	65	58
Treonina ,% lisina	72	65
Triptofano ,% lisina	20	20
Valina, % lisina	74	69

Alcune considerazioni (pratiche) conclusive sulla nutrizione in lattazione

- Alimento ricco in amidi e grassi e con poca fibra
- Basso tenore proteico con corretto apporto in SDI Amino Acid
- Acidi grassi essenziali (rapporto linoleico su linolenico 10:1)
- Alimentazione liquida > del pellet > dello sfarinato
- Massimo 2-2,5 kg alimento per pasto con disponibilità di acqua buona e fresca
- Distribuzione quando ambiente più fresco
- Attenzione alle micotossine (additivi ad hoc)
- Additivi: Enzimi, Epatoprotettori, Antiossidanti, Antinfiammatori e minerali e vitamine

