

WEBINAR VALFRUIT

VALorization of genetic resources to improve FRUIT grops

per il miglioramento della resilienza dei sistemi frutticoli

Martedì 28 ottobre Ore 16:30-18:30

APPLICAZIONE DI TECNICHE DI POPOLAZIONI SEGREGANTI DI MEDI Dott. Agr. Marzio Zaccarini responsa

Dott.ssa Michela Mattioli

- Presentazione azienda
- Obiettivi del progetto
- Fasi del progetto
- Attività future

CONSORZIO ITALIANO VIVAISTI

Since **1983**

MAZZONI GROUP

www.mazzonigroup.com

SALVI GROUP

www.salvi.it

TAGLIANI GROUP www.taglianivivai.it

90% VARIETA CIV

PERO

- **MELO**
- **PERO**
- DRUPACEE

ATTIVITÁ

- PRODUZIONE MATERIALE DI PROPAGAZIONE CERTIFICATO
 - Melo Ciliegio
 - Fragola Pero
- INNOVAZIONE VARIETALE
 - 43 coblying PROGRAMMA DI MIGLIORAMENTO GENETICO INTERNO
 - INTRODUZIONE DI NUOVE VARIETÁ
 - Breeders INN • Istituti
 - PARTECIPAZIONE A PROGRAMMI ESTERNI
 - East Malling (Regno Unito)
 - PICO (Canada)
 - DCA Bologna (Italia)
 - Cornell (USA)
 - HortResearch (Nuova Zelanda)
- GESTIONE DELLA PROPRIETÁ INTELLETTUALE
 - Marchi Brevetti

OBIETTIVO DEL PROGETTO VALFRUIT

Implementazione e validazione di strumenti di selezione assistita nell'ambito del programma di miglioramento genetico del melo del CIX, per la selezione di varietà resistenti alla ticchiolatura.

1. SCELTA DELLE POPOLAZIONI RESISTENTI A **TICCHIOLATURA**

Nel progetto sono state analizzate 8 popolazioni:

- 4 con un genitore portatore del gene Rvi6

- 4 con almeno	un genitore	portatore sia del gene	Rvi6 che Rvi2	16/1
2. SCELTA	DEI M	ARCATORI	098	
Markers	Gene Rvi	NON Resistanta	Resistenza	
MS8_Y124	Rvi6	240	Т	
FBsnRvi2-4_R590	Rvi2	Ğ	Α	
FBsnRvi2-1 M417	Rvi2	C	A	

Popolazione	N° Semenzali	Gene ricercato
I14-19	107	Rvi6
175-79	46	Rvi6
16.19	92	Rvi6
117-19	22	Rvi6
126-22	662	Rvi6 + Rvi2*
128-22	329	Rvi6 + Rvi2*
123-23	149	Rvi6 + Rvi2*
128-23	415	Rvi6 + Rvi2*

Totale semenzali analizzati: 1.822

3. CAMPIONAMENTO

CONSORZIO A GERBO VIVAISTI

- Cartellinatura semenzali con attribuzione di codice univoco
- Raccolta campioni
- Preparazione di piastre standard a 96 pozzetti
- Compilazione di tabella sinottica della piastra

 Invio delle 21 piastre ottenute al laboratorio LGC genomics per l'anclisi

PI	AST	5 V	151	43	845							
	_1	2	3	4	5	6	7	8	9	10	11	12
Α	096	114-19- 097	114-19- 098	114-19- 099	114-19- 100	114-19- 101	114-19- 102	114-19- 103	114-19- 104	114-19- 105	114-19- 106	114-19 107
D	001	115-19- 002	115-19- 003	115-19- 004	115-19- 005	115-19- 006	115-19- 007	115-19- 008	115-19- 009	115-19- 010	115-19- 011	115-19 012
С	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19
	013	014	015	016	017	018	019	020	021	022	023	024
D	115-19-	115-19-	115-19-	115-19-	115-19-	I15-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19
	025	026	027	028	029	030	031	032	033	034	035	036
E	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	115-19-	116-19-	116-19
	037	038	039	040	041	042	043	044	045	046	001	002
F	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19
	003	004	005	006	007	008	009	010	011	012	013	014
G	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19-	116-19
	015	016	017	018	019	020	021	022	023	024	025	026
н	116-19- 027	116-19- 028	116-19- 029	116-19- 030	116-19- 031	I16-19- 032	116-19- 033	116-19- 034	116-19- 035	116-19- 036	I16-19- 037	

4.1. ANALISI POPOLAZIONI PER Rvi6

• Le 4 popolazioni sono caratterizzate dalla presenza di un genitore omozigote non resistente (C:C) e da un genitore eterozigote resistente (C:T) per il gene Rvi6.

Alleli Rvi6 (MS8-Y124)						
C:C	Omozigote non resistente					
C:T	Eterozigote resistente					
T:T	Omozigote resistente					

Hanno segregato come mostrato in tabella

Rvi6 (MS8_Y124)							
Danalasiana	Ris	sultato atte	eso	Ris	sultato ape	lsi)	
Popolazione	% C:C	% C:T	% T:T	% C:C	% C:T	% T:T	
l14-19	50%	50%	0%	47,7%	5 C+%	0,9%	
l15-19	50%	50%	0%	43.5%	34,8%	21,7%	
I16-19	50%	50%	0%	45,7%	45,7%	7,6%	
l17-19	50%	50%	0%	60%	30%	10%	

Popolazione	Rvi6 (MS8_Y124)		
Popolazione	GENITORE A	GENITORE B	
I14-19	C:C	C:T	
I15-19	C:C	C:T	
I16-19	C:C	C:T	
I17-19	C:C	C:T	

- Come evidenziato in tabella, sono stati individuati semenzali omozigoti (T:T), risultato **non possibile** in quanto non presenti genitori omozigoti resistenti.
- A seguito di questi risultati non attesi stiamo indagando per verificare la causa di questa omozigosi, per
 cercare di capire se ci siano stati inquinamenti durante la fase d'impollinazione, attraverso fingerprinting.

5. FENOTIPIZZAZIONE DELLE POPOLAZIONI CON Rvi6

CONSORZIO | A TEARS VIVAISTI | A TEARS VIVAISTI |

- Le 4 popolazioni sono state fenotipizzate utilizzando i descrittori UPOV.
- A seguito della fenotipizzazione, la resistenza alla ticchiolatura, è stata confermata per gli individui risultati C:T, eterozigoti resistenti.
- Anche gli individui T:T (non attesi) sono risultati resistenti
- Stiamo indagando per cercare di capire l'origine del risultato

4.2 ANALISI POPOLAZIONI Rvi6 e Rvi2

• Le 4 popolazioni scelte sono caratterizzate dalla presenza di un genitore portatore sia del **gene Rvi6** che del gene **Rvi2**.

Ricerca del gene Rvi6

Rvi6 (MS8_Y124)							
Danalariana	Ris	sultato atte	eso	Ris	sultato Ana	isi	
Popolazione	% C:C	% C:T	% T:T	% C:C	70 C T	% T:T	
123-23	25%	50%	25%	18.8%	51,7%	29,5%	
128-23	25%	50%	25%	31,7%	50,1%	18,2%	
126-22	25%	50%	25%	36,5%	47,0%	16,5%	
128-22	50%	50%	0%	56,6%	43,4%	0%	

	Alleli Rvi6 (MS8_Y124)						
C:C	Omozigote non resistente						
C:T	Eterozigote resistente						
T:T	Omozigote resistente						

Popolazione	Rvi6 (MS8_Y124)			
Popolazione	GENITORE A	GENITORE B		
123-23	C:T	C:T		
128-23	C:T	C:T		
126-22	C:T	C:T		
128-22	C:T	C:C		

I risultati ottenuti sono allineati con quello che ci aspettavamo.

4.2 ANALISI POPOLAZIONI Rvi6 e Rvi2

Ricerca del gene Rvi2

Per il gene Rvi2 sono stati utilizzati due diversi marcatori molecolari

Popolazione	Rvi2 (FBsnRvi2-4_R590)			
Popolazione	GENITORE A	GENITORE B		
123-23	A:A	G:G		
128-23	A:A	G:G		
126-22	A:A	G:G		
128-22	A:A	G:G		

Alleli Rvi2 (FBsnRvi2-4_R590)				
G:G Omozigote non resistente				
G:A	Eterozigote resistente			
A:A Omozigote resistente				

Rvi2 (FBsnRv	/i2-1_M417)
GENITORE A	GENITORE B
A:A	C:C
A:A	C:C
A:A	c:c
A:A	7:C
	A:A A:A A:A

<u> </u>	
Allel	i Rvi2 (FBsnRvi2-1_M417)
c:C	Omozigote non resistente
C:A	Eterozigote resistente
A:A	Omozigote resistente

Rvi2 (FBsnRvi2-4_R590)									
Popolazione	Risultato atteso			Risultato Analisi					
	% G:G	% G:A	% A:A	% G:G	% G:A	% A:A			
123-23	0%	100%	0%	46,9%	25,9%	27,2%			
128-23	0%	100%	0%	51,8%	48,2%	0%			
126-22	0%	100%	0%	56,1%	43,9%	0%			
128-22	0%	100%	0%	48,8%	51,2%	0,4			

R i2 (FBsnRvi2-1_M417)									
Donalario	Risultato atteso			Risultato Analisi					
Popolazioi e	% C:C	% C:A	% A:A	% C:C	% C:A	% A:A			
123-23	0%	100%	0%	41,2%	30,1%	28,7%			
128-23	0%	100%	0%	50,5%	49,5%	0%			
126-22	0%	100%	0%	55,4%	44,6%	0%			
128-22	0%	100%	0%	38,8%	39,1%	22,1%			

- I risultati ottenuti non sono quelli attesi, le percentuali si discostano in maniera netta dall'atteso.
- Stiamo indagando per cercare di capire la ragione di questo risultato.
- La fenotipizzazione è stata fatta solo per la resistenza a ticchiolatura in quanto la fruttificazione non c'è ancora stata.

5. Attività future

CONSORZIO CONSORZIO VIVAISTI CARRO VIVAISTI

- Studio dei dati ottenuti.
- Individuazione degli individui resistenti e multi-resistenti.
- Fenotipizzazione degli stessi.
- Selezione dei genotipi più interessanti per le caratteristiche di resistenza, conservabilità, aspetto e caratteristiche organolettiche dei frutti.
- Definizione dell'utilizzo degli stessi, come nuove varietà o per incrementare il nostro germicolasma.

Grazie O'per l'attenzione

