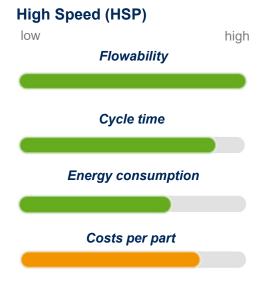
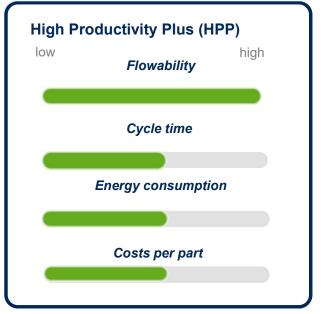

Savings through Innovation

Rory Chandler Business Development Manager

Rethinking Production Efficiency

BASF HPP - High Productivity Plus


High Productivity Plus
Ultramid® B3EG6/G7 HPP
Ultradur® B4300G2/G3/G4 HPP



BASF HPP - <u>High Productivity Plus</u> Material Portfolio

20/11/2025 Savings through Innovation

<u>High Productivity Plus</u> (HPP) PA6 and PBT for reduced cycle times

Grades:

Ultramid® B3EG6/G7 HPP BK23346

Ultramid® B3EG6 HPP UN

Ultradur® B3400G2/G3/G4 HPP

Key properties:

Low viscosity grades, offering excellent flowability

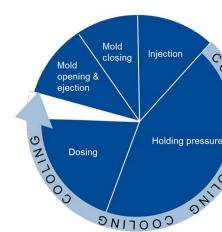
Significantly faster crystallization during injection molding

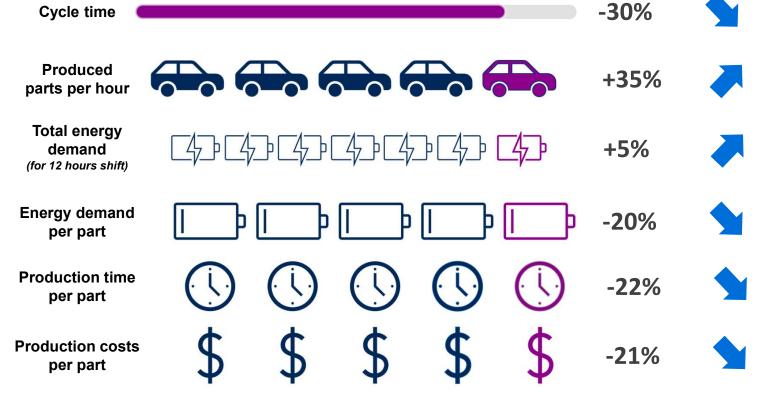
Shorter cycle times up to 30% can be realized*)

Benefits:

Reduction of melt temperature → energy savings

Reduction of cooling time → time savings




Overall cost savings

*) by reduction of melt temperature to 230°C

Ultramid[®] and Ultradur[®] HPP Cost Saving Calculation Tool and Customer Examples

Courtesy of BASF

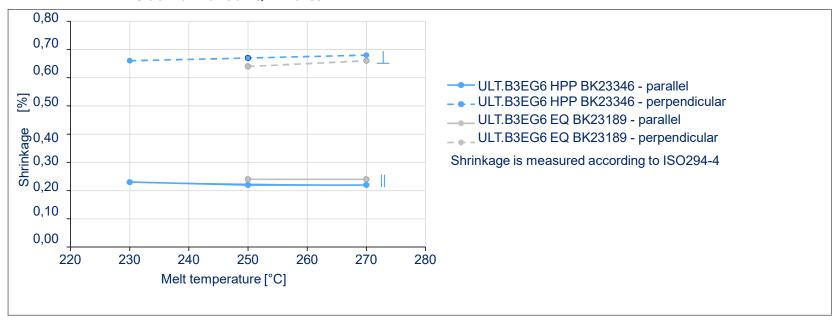
!'ALBIS

Ultramid® B3EG6 HPP

Comparison of properties for BASF PA6-GF30

Test results production trial Ultramid® B3EG6 HPP UN & BK23346

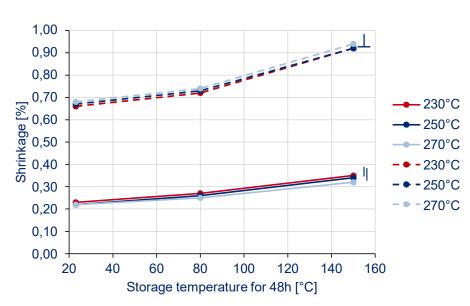
TDS values

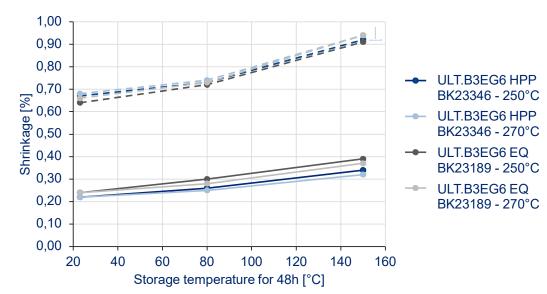

Unit	B3EG6 HPP UN	B3EG6 HPP BK23346	B3EG6 UN	B3EG6 EQ BK23189
cm³/10min	105	115	35	25
g/cm³	1.35	1.35	1.36	1.36
%	1.9 – 2.3	1.9 – 2.3	1.9 - 2.3	1.9 - 2.3
MPa	9800 / 6300	9800 / 6100	9500 / 6200	9000 / 5400
MPa	185 / 110	175 / 105	185 / 115	165 / 105
%	3.4 / 6.4	3.2 / 7	3.5 / 8	4.3 / 10
kJ/m²	85 / 95	75 / 90	95 / 110	95 / 110
kJ/m²	55 / 55	50 / 50	80 / -	80 / 85
kJ/m²	12 / 17	10 / 15	15 / 30	12 / 18
kJ/m²	10 / 10	8.6 / 8.3	11 / -	8 / -
°C	210	210	210	200
°C	220	220	220	220
	cm³/10min g/cm³ % MPa MPa % kJ/m² kJ/m² kJ/m² cC	cm³/10min 105 g/cm³ 1.35 % 1.9 – 2.3 MPa 9800 / 6300 MPa 185 / 110 % 3.4 / 6.4 kJ/m² 85 / 95 kJ/m² 55 / 55 kJ/m² 12 / 17 kJ/m² 10 / 10 °C 210	BK23346 cm³/10min 105 115 g/cm³ 1.35 1.35 % 1.9 – 2.3 1.9 – 2.3 MPa 9800 / 6300 9800 / 6100 MPa 185 / 110 175 / 105 % 3.4 / 6.4 3.2 / 7 kJ/m² 85 / 95 75 / 90 kJ/m² 55 / 55 50 / 50 kJ/m² 12 / 17 10 / 15 kJ/m² 10 / 10 8.6 / 8.3 °C 210 210	cm³/10min 105 115 35 g/cm³ 1.35 1.35 1.36 % 1.9 - 2.3 1.9 - 2.3 1.9 - 2.3 MPa 9800 / 6300 9800 / 6100 9500 / 6200 MPa 185 / 110 175 / 105 185 / 115 % 3.4 / 6.4 3.2 / 7 3.5 / 8 kJ/m² 85 / 95 75 / 90 95 / 110 kJ/m² 55 / 55 50 / 50 80 / - kJ/m² 12 / 17 10 / 15 15 / 30 kJ/m² 10 / 10 8.6 / 8.3 11 / - °C 210 210 210

Ultramid®

Ultramid® B3EG6 HPP BK23346Shrinkage

Shrinkage after storage in standard climate (23°C, 50% r.h.) as a function of melt temperature in comparison to Ultramid® B3EG6 EQ BK23189


Shrinkage independent of melt temperature


Ultramid® B3EG6 HPP BK23346`

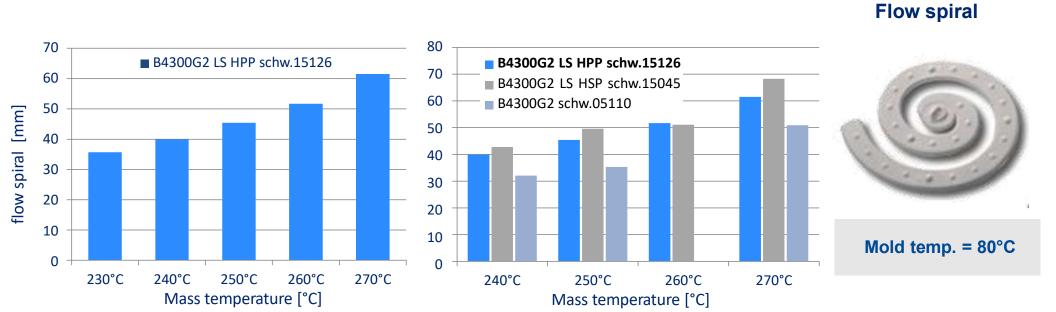
Shrinkage after storage in standard climate and after heat aging for 48h

Ultramid® B3EG6 HPP BK23346:

In comparison to Ultramid® B3EG6 EQ BK23189

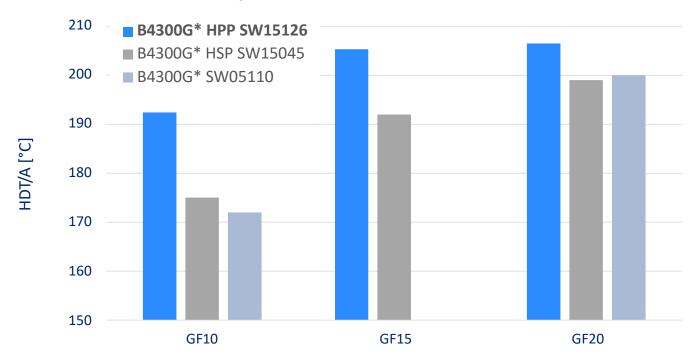
Post-shrinkage independent of melt temperature and comparable to Ultramid® B3EG6 EQ BK23189

parallel perpendicular


20/11/2025 Savings through Innovation

Ultradur® B4300G2/G3/G4 HPP

New Ultradur® HPP products: B4300G2 LS HPP BK 15126 Flowability



Excellent flowability even at low mass temperatures down to 230°C, on the level of Ultradur® High Speed Grades / Noticeable improvements in flowability compared to standard grades

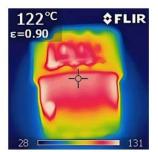
!'ALBIS

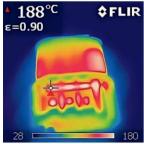
New Ultradur® HPP products

Heat Distortion Temperature

Significantly higher heat distortion temperature enables earlier demolding in injection molding process

Case Study

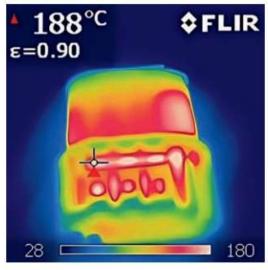



New Ultradur® HPP products Ultradur® B4300G3

Case Study - TE Connectivity's Success with BASF

One major challenge was reducing cycle time in injection molding - a key factor that directly impacts productivity, energy consumption, and overall costs. While advancements in tooling and machine technology contributed to improvements, TE Connectivity recognized that material selection played a crucial role in further optimizing cycle time.

By integrating BASF's HPP materials and optimizing processing parameters, TE Connectivity significantly enhanced its production process. The material switch not only reduced costs but also lowered carbon emissions, contributing to more sustainable manufacturing


Courtesy of BASF

New Ultradur® HPP products Ultradur® B4300G3

Case study - Demolding at higher temperature

Demolding at higher temperatures during DSC analysis, the developed material showed a higher crystalization peak (median 202°C) than the flow modified variant (median 195°C). This allows the parts to be demolded at higher temp., thus helping to reduce cycle time.

Thermographic images of the parts immediately after demolding

Left: standard PBT Right: optimized PBT HPP.

Parts using HPP can be demolded at significantly higher temp. without damage

Courtesy of BASF

New Ultradur® HPP products Ultradur® B4300G3

Case study - No Dimensional Deviations

No Dimensional Deviations

Computed tomography (CT) scans showed no relevant dimensional deviations between the components produced with the HPP material in reduced cycle time and the series produced components.

In the evaluation of CT scans of the part, standard PBT vs HPP material, no dimensional deviation is observed despite the significantly reduced cycle time.

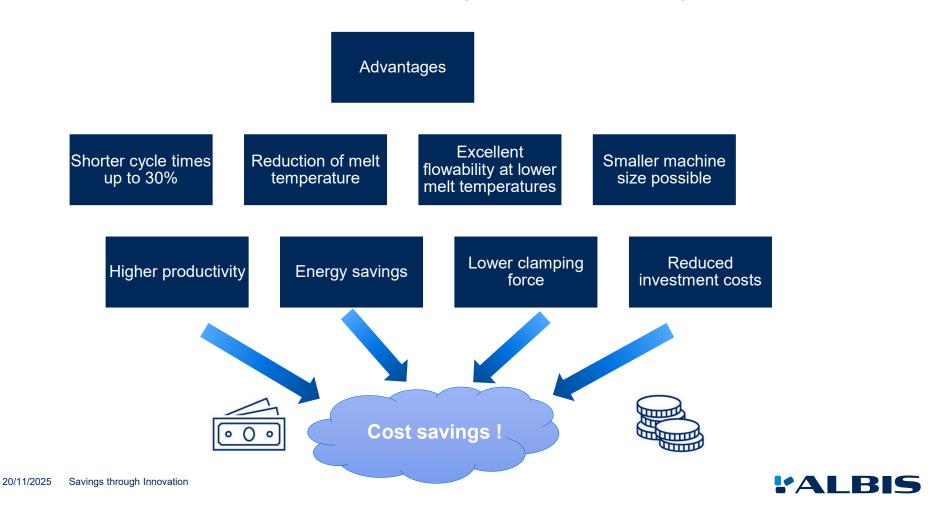
Courtesy of BASF

New Ultradur® HPP Ultradur® B4300G3

Case study

Using Ultradur® B4300G3 material achieved:

- up to 36% reduction in cycle time
- 30% increase in efficiency
- 15-22% lower unit energy consumption
- whilst maintaining high product quality



Summary

Ultramid® & Ultradur® HPP - High Productivity Plus

Ultramid® & Ultradur® HPP - High Productivity Plus

Grade	B3EG6 HPP UN	B3EG6 HPP BK23346	Ultradur B4300G2 LS HPP BK 15126	Ultradur B4300G3 LS HPP BK 15126	Ultradur B4300G4 LS HPP BK 15126
Polymer/Filler/ Color	PA6 GF30 natural	PA6 GF30 black	PBT GF10 black	PBT GF15 black	PBT GF20 black
Special feature	CTI 600	Lasermarking possible, CTI 600	Lasermarking optimized	Lasermarking optimized	Lasermarking optimized

We have a long history with our trusted Partners



ALBIS Portfolio

The offering is enhanced with Purging Agents and Color and Functional Batches

Available as a sustainable solution, e.g. mechanically recycled, chemically recycled, bio-circular polymer or bio-polymer

Technical Expertise

Application expertise from part conception to series production

Component Design

Polymer-specific design support, including structural analyses and injection molding simulations

Mold Design & Construction

In house expertise in mold design and support

Local Technical Service

32 plastics engineers worldwide: always close to the customer and our partners

Material Selection

Advice in choosing the best material for the application

Product Development

Customization of plastics to achieve specific application performance

Processing Optimization

Expert, hands-on technical support to optimize the production process

Thank you!

ALBIS PLASTIC Italia S.r.I. Via Marsala 2 21013 Gallarate, Italy

+39 0331 245445 info@albis.com www.albis.com

LinkedIn

Registration ALBIS #AHOY Newsletter

® indicates a registered trademark, TM indicates an unregistered trademark, each belonging to the respective/indicated brand owner

